
Journal of Mathematical Chemistry 15 (1994) 339-352 339 

Adjointjoin volumes 

Michae l  L. C o n n o l l y  

1259 El Camino Real ~k184, Menlo Park, 
CA 94025, USA 

Received 6 April 1993 

A simple geometrical identity, called the adjoint join formula, is introduced. It allows one 
to simplify the computation of the volumes of some unions of simple solid objects such as 
spheres and polyhedra. It involves cones and a generalization of a cone, called a join. In order to 
apply the adjoint join formula it is necessary to first compute the surface of the object. The 
volume of an object is equal to a cone of the object's surface over some point. This cone is the 
sum of the cones of each face of the surface over the point. The computation of the volume of 
each of these cones can sometimes be simplified by applying the adjoint join formula. The 
adjoint join formula states that if two geometrical objects in space have dimensions that sum to 
three, then the join of the boundary of the first object with the second object is equal to the 
join of the first object with the boundary of the second object (up to sign). There are occasions 
when the volume of the first join is difficult to compute, but the volume of the second join is 
easy to compute, so applying the adjoint join formula simplifies the volume computation. The 
method is applied to the union of a group of spheres. This provides a simple way to compute 
the volume of a molecule analytically, provided that one can compute its van der Waals surface 
analytically. This is not the first analytical and exact method to compute the volume of a 
hard-sphere representation of a molecule, but it is conceptually the simplest. 

1. I n t r o d u c t i o n  

W h e n  c o m p u t i n g  the vo lumes  o f  sol id objects ,  exac t  m e t h o d s  f r o m  solid and  ana-  
lyt ic  g e o m e t r y  are  used  fo r  s imple objects  such as p o l y h e d r a ,  spheres  and  vo lumes  

o f  r evo lu t ion .  N u m e r i c a l  a p p r o x i m a t i o n s  such as oc t rees  [1 ] a n d  S impson ' s  rule  [2] 

are  used  fo r  c o m p l e x  objects  such  as those  f r o m  cons t ruc t ive  sol id g e o m e t r y  a n d  
b o u n d a r y  r ep re sen t a t i ons  [3]. This  p a p e r  in t roduces  a geome t r i c  ident i ty ,  cal led the 
ad jo in t  j o in  fo rmu la ,  t ha t  will he lp  ex t end  exact ,  ana ly t ic  m e t h o d s  to  objec ts  o f  

i n t e r m e d i a t e  complex i ty .  F o r  example :  
• un ions  o f  spheres ,  

• un ions  o f  spheres  and  po lyhed ra ,  
• vo lumes  b o u n d e d  by  pieces o f  spheres  and  tor i  t ha t  mee t  a t  c i rcu la r  arcs.  

T h e  bas ic  idea  is to  replace  one  desc r ip t ion  o f  a pa r t i cu l a r  v o l u m e  o f  space  by  
a n o t h e r  desc r ip t ion  whose  v o l u m e  c o m p u t a t i o n  is s impler .  A l t h o u g h  the re  are  
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some algebraic equations and mathematical  proofs in the paper, most  of  the paper 
is concerned with trying to convey the concepts involved. In particular, I hope to: 
• make the geometric meaning of  the adjoint join formula clear, 
• make the fact that  the adjoint join formula is true seem intuitively obvious. 

In order to explain this topological method  it is necessary to explain a number  
of  ideas in common use in algebraic topology: cones, chains, joins, boundaries and 
adjoint operators. After this is done, the adjoint join formula will be stated and 
proved, and finally some examples of its application will be presented. 

2. C o n e  

The topologist  uses the word cone [4] to refer not  only to the traditional cone 
with a circular base, but also many other, more general objects (fig. 1). The volume 
of  a three-dimensional cone with a fiat base is one-third the altitude times the area 
of  the base. A cone does not need to be three-dimensional and it does not  need to 
have a flat base. A sector of a circle is a cone of  an arc over the circle center. A part  
of  sphere lying between the center of  the sphere and a region on the surface of the 
sphere is also a kind of cone fig. 1 (d). The volume of this three-dimensional cone is 
one-third the area of  the spherical region times the radius. The area of  the spherical 
region can be computed from the Gauss-Bonnet  formula [5,6]. A cone can have a 
base made up of  several parts, each with a different altitude (fig. l(e)). The area of  a 
polygon may be computed by decomposing it as a cone of its boundary over some 
point  in the interior (fig. 1 (f)). The volume of  a polyhedron may be computed analo- 
gously. All of  these figures satisfy the mathematicians definition of  a cone, which 
is the union of  all lines connecting the vertex to a point on the base [2]. 

a b 

c d 

Fig. 1. Several different kinds of cones. 
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3. O r i e n t a t i o n  

For  some cones there are problems with this simple definition (fig. 2). We want  
the cone of  triangle ABC over vertex P to be independent  of  where the point  P is 
located, but  with our current  definition, i fP  is inside the triangle we get a different 
cone than if P is outside the triangle. For  P outside the triangle (fig. 2(b)), some 
points lie on more  than one cone line connecting the cone vertex to the triangle. For  
example, points lying inside the shaded region, but  outside the triangle lie in both  
the cone of  AB over P and also the cone o f B C  + CA over P. This problem is gener- 
ally handled by simply saying that  the cone is undefined in such cases, but  we are 
not  willing to limit ourselves. 

An  idea that  will enable us to achieve our objective is the idea of  an orientation 
[7]. An  orientat ion is a handedness.  For  a line segment, it is a direction, as in a vec- 
tor  or an edge of  a directed graph. For  a point  it is a formal plus or minus sign. 
For  a polygon, it is a clockwise or counterclockwise traversal o f  the edges. In  this 
article we will follow the convention that  a clockwise orientat ion gives a positive 
area and a counter-clockwise orientation gives a negative area. For  a te t rahedron,  
it is the sign of  the volume as determined by the triple product  of  three edges meet-  
ing at a vertex. 

Another  useful idea is that  of  a chain [7]. In algebraic topology, a chain is a collec- 
tion of  objects, for example polygons, each with a sign or orientation. In fact, one 

A 

A 
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pO 

Fig. 2. Area of triangle described as cone of triangle boundary over a point. 
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can assign to each polygon of the chain not just a plus or minus sign, but any inte- 
ger, positive, negative or zero. These integers are sometimes called coefficients, in 
analogy with polynomials. A coefficient of zero means that the polygon is not 
included in the chain. The simplest planar polygon is the triangle, and the simplest 
spatial polyhedron is the tetrahedron. The general term for the simplest polyhe- 
dron in each dimension is simplex [7]. A 0-simplex is simply a point. In this paper, 
chains will always have a homogeneous dimension. An n-chain is a finite set of 
n-dimensional simplices, each with an integer coefficient. Any polygon or poly- 
hedron can be decomposed into simplices. 

Since we are dealing with oriented geometrical objects, their areas and volumes 
will be signed areas and volumes. In fig. 2(c) triangle ABP is clockwise, which gives 
a positive area, but triangles BCP and CAP are counterclockwise, giving negative 
areas which cancel out part of triangle A BP. The sum of these three triangle areas is 
triangle ABC, as desired. 

4. Join  o f  t w o  chains  

A cone is a special case of a more general geometrical construction called a join 
[4,8]. Instead of considering all lines from a point to an object, we consider all lines 
from one object to another object. As before, it is best to represent geometrical 
objects as oriented chains. The join of two skew lines in space is a tetrahedron (fig. 
3). The asterisk symbol is used to represent the join operation. If a simplex is repre- 
sented by listing its vertices in some order, then the join of two simplices is the sim- 
plex defined by concatenating these two vertex lists. The join operation resembles 
a product and obeys the distributive law. That is, i f F  is one chain and G and H are 
two other chains, then F • (G + H) = F • G + F • H. It is also commutative, up 
to sign: F • G = (-1)JkG • F ,  where j  is the dimension o f f  and k is the dimension 
of G. The sign is due to the fact that we are dealing with oriented chains and rever- 
sing the order of the factors is a permutation that can be decomposed intojk  trans- 
positions of vertices. For non-oriented chains, the join operation is strictly 
commutative [7]. 

Curved objects can be handled using differentiable chains [9]. A differentiable 
chain is a formal sum of differentiable simplices, each with an integer coefficient. A 
differentiable simplex is a differentiable mapping from a straight simplex into 

B B 

A D 
D 

Fig. 3. The join of two line segments in general position is a tetrahedron. 
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Euclidean space. Let S1 and $2 be two straight simplices. Let Pl be a point in $1 
and letp2 be a point in $2. Let two curved simplices be defined by two mappings ml 
and m2 from $1 and $2, respectively, into Euclidean space. Let a line segment 
from ml (Pl) to m2(P2) be parametrized by the real variable t running from 0 to 1. 
The join of these two curved simplices is defined by 

j: S1 x [0, 1] x $2 --)'E, 

j(Pl, t,p2) = (1 - t)ml(Pl) + tm2(P2) • 

5. B o u n d a r y  o f  a chain 

Some chains are the boundaries of other chains. For example, the polygons of 
the surface of a polyhedron form the boundary of the solid polyhedron. The partial 
derivative symbol 0 is used in topology to mean "the boundary of". The boundary 
of a line segment from point A to point B is B - A, that is, OAB = B - A. Let  0 
mean the empty chain. For triangle A B C  let us compute the boundary of its 
boundary: 

O~(ABC) = O0(ABC)  = O(AB + B C  + CA) 

= + O S C  + OCA = ( S  - A )  + ( C  - S )  + (A - C) = O. 

In fact, it is proven in homology theory that 0 2 = 0 always [10]. This is generally 
stated as: the boundary of a boundary is zero, or a boundary has no boundary. 

We are interested in the relationship between boundaries and joins. In particu- 
lar, note that the volume of any solid object can be written as the cone of its 
boundary over a point in the interior (fig. 1 (f)). In fact, due to the use of orienta- 
tions and cancellations of areas and volumes (fig. 2(c)), one could just as well use a 
point outside the object as the cone vertex. 

6. B o u n d a r y  o f  a join 

There is a simple formula for the boundary of the join of two chains F and G: 

O(F • G) = (OF) • G + ( -1)k+lF * OG, 

where k is the dimension of the chain F. It resembles the coboundary formula in 
cohomology theory [7], except that here there is a factor of ( -1 )  k+l instead of 
(-1)k, due to the extra dimension introduced by the line segment from a point o f f  
to a point of G. The proof of this equation for the case of a tetrahedron involves 
examining fig. 3. The join of line segment A B  with line segment CD is the tetrahe- 
dron A B C D .  The boundary of A B  is B - A. The boundary of CD is D - C. The 
boundary of the tetrahedron can be determined by omitting each vertex in turn and 
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alternating the sign: O ( A B C D )  = B C D  - A C D  + A B D  - A B C .  If we cyclically 
permute (rotate) the vertices of a triangle, the sign does not change, but a transposi- 
tion of two vertices corresponds to a reflection and reverses the sign. 

O ( A B  • CD)  = O ( A B C D )  

= B C D  - A C D  + A B D  - A B C  

= ( B C D  - A CD) + ( A B D  - A B C )  

= ( B ,  C D  - A • CD)  + ( A B ,  D - A B  • C)  

= (B - A)  • C D  + A B  • (D - C) 

= O(AB)  • C D  + A B  • O(CD) 

= O(AB)  • CD + ( -1 )k+IAB,  O(CD),  where k = 1. 

The proof for simplices in other dimensions is analogous. The proof for chains 
made up from more than one simplex is clear, because the boundary operator (0) 
and the join operator (,) are both linear. The proof for curved chains is also a 
straightforward generalization, because they are differentiable chains and differen- 
tiation is linear. 

7. B o u n d a r y  of  a degenerate  jo in  

If one chooses two random line segments in space, almost always they will be 
skew to each other and define a tetrahedron of non-zero volume. Mathematicians 
call this being in "general position" [4]. But it is possible that the two line segments 
will lie in a common plane, thus defining a degenerate tetrahedron. Degenerate 
joins always occur if the sum of the dimensions of the two chains is greater than or 
equal to the dimension of the ambient Euclidean space. For example, two line seg- 
ments in a plane each have dimension one, and 1 + 1 >1 2 (the dimension of the 
plane), so their join must be degenerate, regardless of how they are positioned. 
Since 1 + 1 = 2, rather than being greater than 2, the boundary of the degenerate 
tetrahedron, namely four flattened triangles, is not itself degenerate. 

It is sometimes helpful to think of a degenerate object as a result of projecting a 
non-degenerate object from a higher-dimensional space to a lower-dimensional 
space. Non-degenerate boundaries of degenerate objects are especially interesting 
because they have zero area, as will be proved below. For example, if we project the 
sphere centered at the origin in three-dimensional space onto the X Y  plane, we 
now have a flattened sphere where the upper hemisphere is now a circular disk with 
area rcr 2 and the lower hemisphere is now a circular disk with area - l r r  2 (negative 
because the orientation is reversed by the projection mapping). So the total area of 
the projected sphere is lrr 2 - lrr 2 = 0. 

That the area of a non-degenerate boundary of a degenerate object is zero is basi- 
cally due to the idea of the degree of a map [11]. The degree of a map means the 
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number of times a geometrical mapping wraps one object around another. It is 
always an integer. For example, the mapping z-+ z 2 wraps the unit circle in the com- 
plex number plane around itself twice. There are actually two degrees of a map, 
the global degree and the local degree. The global degree is defined for the object as 
a whole, and the local degree is defined at each point. The local degree is computed 
by taking a point projected onto and adding up a finite number of plus and minus 
ones, where there is a plus one for each time the map preserves orientation, and a 
minus one for each time the map reverses orientation. For points in the second 
object that are not projected onto by any point in the first object, the local degree is 
defined to be zero. The global degree is defined only when the local degree is the 
same at all points, in which case it is simply defined to be this common local degree. 
This is the only case that is of interest to topologists, but since we are geometers, 
the local degree is also of interest. In particular, the area of the projected figure is 
simply the integral of the local degree of the projection map. 

One can also use the local degree to describe a region of space in a manner that 
generalizes the characteristic function of a set from measure theory [2]. The charac- 
teristic function is defined to be 1 for points inside the set, and 0 for points outside 
the set. The local degree simply generalizes the characteristic function from having 
two possible values (0 or 1) to having any integer as a possible value. If the local 
degree is zero everywhere, this corresponds to the empty set. In chemical applica- 
tions, it is acceptable for this local degree or generalized characteristic function to 
have values other than 0 or 1 in intermediate steps in the calculation, but at the end 
of the calculation, the local degree will have to have values of only 0 or 1 in order 
to correspond to the traditional characteristic function and so define a region of 
space. 

A degenerate object in the plane can be thought of as the projection of a non- 
degenerate object in space onto the plane. The area of a projected boundary is 
obtained by integrating the local degree of the projection map over all points. In 
fig. 4, the projected boundary is drawn edge-on and not quite completely fiat, so 
that four points actually superposed on each other can be distinguished. In the fig- 
ure this is shown as 2 dots on segments with the arrows pointing to the right and 2 
dots on segments with the arrows pointing to the left. At any point in the plane, the 
number of points where the projection map keeps the same orientation is equal to 
the number of points where the projection map reverses the orientation. This 
means that the degree of the projection map from the boundary in space onto the 
plane is zero. 

f 
, . . . .  

Fig. 4. The degree of a projection mapping of a boundary onto a plane, seen edge on. 
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It is easy to show that this statement holds in general. The global degree of a 
map is defined only for objects that have no boundaries, such as circles, spheres and 
the surfaces of polyhedra [11]. This requirement is necessary to ensure that the 
degree is the same at each point (it would change ifa boundary were crossed). Since 
a boundary has no boundary, the projection mapping from any boundary onto 
the plane has a well-defined global degree. Since there are obviously some points in 
the plane that the boundary is not projected onto, the degree of the map at these 
points must be zero. Putting these two facts together shows that the global degree 
of the projection map is zero. This implies that the local degree is zero at each and 
every point, so not only is the signed area of a projected boundary zero, but the pro- 
jected boundary has the same generalized characteristic function as the empty set. 
That is, the area cancellation occurs at eachpoint; it is not simply a case of a positive 
area in one part of the projected boundary cancelling a negative area in another 
part of the projected boundary. 

These same ideas hold in higher dimensions and for curved objects (differenti- 
able chains). If we have a boundary of a degenerate object in space, it can be 
thought of as a projection of a non-degenerate object from four-dimensional space, 
and so the boundary volume is zero. The more subtle point at the end of the last 
paragraph carries over too: the degenerate boundary corresponds to the empty set, 
because its generalized characteristic function vanishes everywhere. Actually, 
only "almost everywhere", because the set of critical values of the degenerate 
boundary has measure zero due to Sard's theorem [11]. The local degree of a map is 
not defined at these points. Since the critical set has measure zero, it will not affect 
the volume. 

Another way to show that the area (or volume) of the boundary of a degenerate 
object is zero is to use Stoke's theorem in its modem formulation due to Elie Car- 
tan [9]. Let M be an n-dimensional differentiable chain in ( n -  1)-dimensional 
space. Then OM is its (n - 1)-dimensional boundary chain in (n - 1)-dimensional 
space. Let ~b be a volume form for ( n -  1)-dimensional Euclidean space. The 
volume of OM can be computed by integrating the volume form q5 over it: 

/oM+--£d+: £o--o. 
The first equality is due to Stoke's theorem. The second equality follows from 

the dimension argument that since d~b is an n-form in (n - 1)-dimensional space, it 
is zero [9]. This shows that the volume of the boundary of a degenerate object is 
zero. The more subtle point that the volume cancellation occurs at each point can 
also be proved using Stoke's theorem, but instead of having ~b be a volume form, let 
it be a distributional form [12]. In particular, let ~b be the Dirac delta function for 
a particular point. 

By abuse of notation, we allow OM to mean not only a differentiable chain, but 
also the generalized characteristic function defined by the local degree of the projec- 
tion mapping onto (n - 1)-dimensional space. That is, OM describes a region of 
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space, with an integer assigned to each point to say how many times it is counted. 
Then the idea that the non-degenerate boundary of a degenerate object is empty 
can be written more simply as: OM = O. 

8. Adjoint joint formula 

We now have developed enough machinery to state and prove the main 
theorem: 

(OF) * G =  ( - 1 ) k F * 0 G ,  

where F and G are chains whose dimensions sum to the dimension of the ambient 
Euclidean space, and k is the dimension of F. The proof is simple. Because of the 
dimensional hypotheses on F and G, F • G is degenerate, but O(F • G) is not degen- 
erate. This means we can apply the result of the previous section, OM -- 0, with 
M = F • G. That is, we imagine that F and G have been projected from analogous 
chains in general position in a higher dimensional space. This gives us 

o ( r  • G) = 0 

If we next apply the earlier equation for the boundary of a join, we get 

(OF) • G + (--1)k+XF * OG = O. 

Moving the right-hand term to the right of the equals sign gives the desired 
formula. 

In the formula (OF) • G = ( -  1)kF • OG the boundary operator 0 is self-adjoint, 
up to sign. The word adjoint is generally applied to operators that are dual to each 
other with respect to a product or pairing [13]. Therefore, I have decided to call 
(OF) • G and ( -  1)kF • OG adjoint joins, even though this is not standard mathema- 
tical terminology. Similarly, I call this formula ( O F ) .  G = (- -1)kF.  OG the 
adj oint join formula. 

A simple example of an application of the adjoint join formula is given by 
fig. 5. The degenerate join of line segment A B  with line segment CD is a projection 
of a tetrahedron onto the plane. Since k = 1, we have 

A 

Fig. 5. The degenerate join of two line segments in the plane. 
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(OCD) * A B  = - C D  * OAB , 

(D - C) * A B  = - C D  * OAB , 

( C - D) * A B  = CD * OAB , 

C *  A B  = D *  A B  + CD * O A B .  

This can be interpreted to read that the join of  C and A B  (which is the triangle 
A B C )  is equal to the join of D and A B  plus the join of the line segment CD with the 
boundary  o f  AB .  The line segment CD is the "ant i -boundary" o f D  - C, in analogy 
with the concept of  an anti-derivative. So the join of C and A B  is equal to the join 
of  D and A B ,  plus the anti-boundary of  the difference of C and D with the boundary  
of  A B .  This idea is not  needed in a figure as simple as fig. 5, but it is useful in 
fig. 6, where the area of  the join of C and the arc A B  is not immediately calculable, 
but  the area of  the join of  D with the arc A B  is immediately calculable because D 
is the center of  the circle that  the arc lies on. Now you may say that one could sim- 
ply, by inspection, parti t ion fig. 6 into two triangles and a sector of  a circular disk, 
and that  is true, but the analogous statement in three dimensions is not  true. There 
is no obvious way to compute the volume of the cone of a region on a sphere over 
a point  other than the center. In this case, it is necessary to use the adjoint join for- 
mula. The value of  being able to compute this volume will be shown in the next sec- 
tion, on computing the volume of  a molecule. 

But first let us consider another application of  the adjoint join formula. In fig. 7 
we have the join of  a line segment and a circular arc, skew to each other in space. 
They are not  actually coplanar, they just look that  way because the illustration is 
two-dimensional. To apply the adjoint join formula we must  find the chain one 
object bounds, and then take the boundary of the other object. Now we can com- 
pute the boundary of  any chain, but we can compute the "ant i -boundary"  of  a 
chain only if it is a boundary.  Since neither the line segment nor the arc is a bound- 
ary, we must  find a way to make one of  them a boundary. We look for a chain 
that  will complete the boundary.  In fig. 7(a) we see that the chain is simply the two 
radial line segments joining the arc end points to the arc center. This introduces a 
new join on the right-hand side of  the equation, which is simply two tetrahedra, the 

A A 

m 

m 

6 13 C 

Fig. 6. The cone of an arc over a point not its center. 
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b 

D D 

:g 

Fig. 7. Applying the adjo in t jo in  formula to the join of  a line segment and an arc. 

volumes of which are easily computed. The modified join, that of a line segment 
with the boundary of a sector, is now amenable to the adjoint join formula (fig. 
7(b)). We replace the line segment by its boundary (one end point minus the other 
end point), and the sector boundary by its anti-boundary, the sector area. In both 
fig. 7(a) and fig. 7(b) we have implicitly used the distributive law. The volume of the 
cone of a sector area over a point is simply one-third the area of the sector times 
the altitude. This completes the calculation. The volume of the segment-arc join 
will be used in the molecular application below. 

Applying the adjoint join formula is analogous to integration by parts: we must 
"integrate" one object and "differentiate" the other. By "integrate", I mean find 
the chain it bounds, and by "differentiate", I mean take its boundary. There are 
also analogies with parts of differential topology. The boundary of a join is analo- 
gous to the boundary of a product [14]. The boundary of a product is the boundary 
of the first factor times the second factor plus the first factor times the boundary 
of the second factor. This Leibniz rule for the boundary of a product is used in the 
idea of a spherical modification [15], also called surgery [16]. For both the adjoint 
join formula and a spherical modification one replaces the first factor by what it 
bounds and the second factor by its boundary. 

Let us consider a simpler application of the adjoint join formula. Let S be a 
complete surface in space and let P and Q be any two points in space. By S being a 
complete surface, I mean that it has no boundary. 

Q , S -  P , S = ( Q -  P) , S = (OPQ) , S 

= ( - 1 ) k P Q ,  OS = ( - 1 ) k p Q , O  = 0 

SO 

Q * S = P * S .  

That is, the volume of the cone of a compete surface over a point is independent of 
the position of the point. 
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9. Molecu l a r  appl ica t ion  

The volume of a molecule will be computed using the adj oint join formula. First 
we consider a two-dimensional figure (fig. 8), which illustrates the basic ideas. 
The area of a union of circular disks (fig. 8(a)) can be described as the cone of  the 
boundary of  the union over some (any) point in the plane. Let us call this cone ver- 
tex the central point. The method by which the boundary is computed is not  
described, but it is not  difficult. The cone of  the boundary is simply the sum of  a set 
of cones over this central point, one cone for each arc of the boundary (fig. 8(b)). 
The method  used in fig. 6 can be used to compute the areas of each of these cones 
(fig. 8(c)). 

The three-dimensional case is similar. The boundary is the van der Waals sur- 
face, which may be computed analytically by a lengthy, complex algorithm [5]. 
Instead of arcs, we have regions on a sphere. The volume of each cone of a spherical 
face over the central point  can be computed using the adjoint join formula to 
express this cone as the sum of  a cone over the atom's  sphere center plus the join of  a 
line segment from the central point  to the a tom center with the boundary of  the 
spherical face (analogously to fig. 6). The volume of  the cone over the a tom center 
is one-third the product  of the sphere radius with the spherical region area, whose 
area may be computed using the Gauss-Bonnet  formula [5,6]. The join of  the line 
segment with the spherical face boundary is the sum of the joins of  the line segment 
with each arc of the boundary.  But we showed how to compute the join of  a straight 
line segment with a circular arc in the previous section. So we are finished. 

The adjoint join formula is related to an earlier method of mine [17] for comput-  
ing van der Waals and solvent-excluded volumes of molecules. It is not  hard to see 
that  the non-shaded polygon region in fig. 8(c) can also be decomposed as in 
fig. 8(d), where there is an interior polygon with accessible a tom centers as its 

b 

C d 

Fig. 8. Application to the union of circular disks indicates how to compute the volume of a 
molecule. 
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vertices. Figure 8(d) resembles fig. 2(b) of my earlier article. The current article's 
method for computing van der Waals volume is essentially equivalent to the one 
presented in the earlier article, except that the application-specific ad hoc construc- 
tion used there is now seen to be an example of a general property of joins. 

Another method for computing the van der Waals volume exactly has been 
developed by Gibson and coworkers [ 18-20]. It uses the inclusion-exclusion princi- 
ple, which relates the volumes of unions to the volumes of intersections. It also 
uses the non-obvious fact that regardless of the number of spheres in the union, it is 
necessary to be able to compute intersections only up to order six. 

The computation of the solvent-excluded volume, in which the van der Waals 
surface is smoothed by rolling a probe sphere over it, can also be performed using 
the adjoint join formula, once the solvent-accessible molecular surface has been 
computed. Unfortunately, this latter surface is difficult to compute, and for mole- 
cules with complex topographies, it is complicated by self-intersecting reentrant 
surfaces that produce cusps. Since my methods for handling cusps [21] cannot 
handle all possible cases, the exact and analytical computation of the solvent- 
excluded volume is still not completely solved. 

10. Advantages and l imitations of  the method 

The main advantages of the adjoint join formula are that it is: 
• simple, 
• general, 
• analytic(exact). 

Computing the volume of the union of simple geometrical objects using the 
adjoint volume formula involves these four steps: 
• computing the boundary of the union, 
• determining how to apply the formula to each face and its boundary, 
• applying the adjoint formula to simplify the description of the cone over each 

face, 
• computing the volume ofthe simplified geometrical objects using solid geometry 

and calculus. 
These first two steps are more combinatorial in nature and require computer 

algorithms, not equations. This article does not present a general algorithm for 
either of the first two steps. It is also not completely clear how to specify what kinds 
of boundaries can be simplified. For example, unions of cones and cylinders gener- 
ally produce faces whose boundaries are made up of non-circular arcs. The adjoint 
join formula can be used to move the cone vertex from the central point to a point 
lying on the axis of a cone or cylinder, but once this is done, there is no simple way 
to compute the volume of the part of the cone or cylinder delimited by these non- 
circular arcs. So for most solid-modeling applications, numerical methods are still 
required. 
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